1,101 research outputs found

    MHC class I loci of the Bar-Headed goose (Anser indicus)

    Get PDF
    MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade

    Genetic variability and structure of jaguar (Panthera onca) in Mexican zoos

    Get PDF
    ArtículoGenealogical records of animals (studbook) are created to avoid reproduction between closely related individuals, which could cause inbreeding, particularly for such endangered species as the Panthera onca (Linnaeus, 1758). Jaguar is the largest felid in the Americas and is considered an important ecological key species. In Mexico, wild jaguar populations have been significantly reduced in recent decades, and population decline typically accompany decreases in genetic variation. There is no current census of captive jaguars in Mexico, and zoos do not follow a standardized protocol in breeding programs based on genetic studies. Here, we emphasise the importance of maintaining an adequate level of genetic variation and propose the implementation of standardised studbooks for jaguars in Mexico, mainly to avoid inbreeding. In addition, achieving the aims of studbook registration would provide a population genetic characterisation that could serve as a basis for ex situ conservation programmes

    The fitness consequences of inbreeding in natural populations and their implications for species conservation – a systematic map

    Get PDF
    Background: Threatened species often have small and isolated populations where mating among relatives can result in inbreeding depression increasing extinction risk. Effective management is hampered by a lack of syntheses summarising the magnitude of, and variation in inbreeding depression. Here we describe the nature and scope of the literature examining phenotypic/fitness consequences of inbreeding, to provide a foundation for future syntheses and management. Methods: We searched the literature for articles documenting the impact of inbreeding in natural populations. Article titles, abstracts and full-texts were assessed against a priori defined criteria, and information relating to study design, quality and other factors that may influence inbreeding responses (e.g. population size) was extracted from relevant articles. Results: The searches identified 11457 articles, of which 614 were assessed as relevant and included in the systematic map (corresponding to 703 distinct studies). Most studies (663) assessed within-population inbreeding resulting from self-fertilisation or consanguineous pairings, while 118 studies assessed among-population inbreeding due to drift load. Plants were the most studied taxon (469 studies) followed by insects (52 studies) and birds (43 studies). Most studies investigated the effects of inbreeding on components of fitness (e.g. survival or fecundity; 648 studies) but measurements were typically under laboratory/greenhouse conditions (486 studies). Observations were also often restricted to the first inbred generation (607 studies) and studies frequently lacked contextual information (e.g. population size). Conclusions: Our systematic map describes the scope and quality of the evidence describing the phenotypic consequences of inbreeding. The map reveals substantial evidence relating to inbreeding responses exists, but highlights information is still limited for some aspects, including the effects of multiple generations of inbreeding. The systematic map allowed us to define several conservation-relevant questions, where sufficient data exists to support systematic reviews, e.g. How do inbreeding responses vary with population size? However, we found that such syntheses are likely to be constrained by incomplete reporting of critical contextual information. Our systematic map employed the same rigorous literature assessment methods as systematic review, including a novel survey of study quality and thus provides a robust foundation to guide future research and syntheses seeking to inform conservation decision-making

    Effect of human leukocyte antigen heterozygosity on infectious disease outcome: The need for allele-specific measures

    Get PDF
    BACKGROUND: Doherty and Zinkernagel, who discovered that antigen presentation is restricted by the major histocompatibility complex (MHC, called HLA in humans), hypothesized that individuals heterozygous at particular MHC loci might be more resistant to particular infectious diseases than the corresponding homozygotes because heterozygotes could present a wider repertoire of antigens. The superiority of heterozygotes over either corresponding homozygote, which we term allele-specific overdominance, is of direct biological interest for understanding the mechanisms of immune response; it is also a leading explanation for the observation that MHC loci are extremely polymorphic and that these polymorphisms have been maintained through extremely long evolutionary periods. Recent studies have shown that in particular viral infections, heterozygosity at HLA loci was associated with a favorable disease outcome, and such findings have been interpreted as supporting the allele-specific overdominance hypothesis in humans. METHODS: An algebraic model is used to define the expected population-wide findings of an epidemiologic study of HLA heterozygosity and disease outcome as a function of allele-specific effects and population genetic parameters of the study population. RESULTS: We show that overrepresentation of HLA heterozygotes among individuals with favorable disease outcomes (which we term population heterozygote advantage) need not indicate allele-specific overdominance. On the contrary, partly due to a form of confounding by allele frequencies, population heterozygote advantage can occur under a very wide range of assumptions about the relationship between homozygote risk and heterozygote risk. In certain extreme cases, population heterozygote advantage can occur even when every heterozygote is at greater risk of being a case than either corresponding homozygote. CONCLUSION: To demonstrate allele-specific overdominance for specific infections in human populations, improved analytic tools and/or larger studies (or studies in populations with limited HLA diversity) are necessary

    Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation

    Get PDF
    Genetic variation was assessed across the UK geographical range of Cirsium acaule and Cirsium heterophyllum. A decline in genetic diversity and increase in population divergence approaching the range edge of these species was predicted based on parallel declines in population density and seed production reported seperately. Patterns were compared with UK populations of the widespread Cirsium arvense.Populations were sampled along a latitudinal transect in the UK and genetic variation assessed using microsatellite markers. Cirsium acaule shows strong isolation by distance, a significant decline in diversity and an increase in divergence among range-edge populations. Geographical structure is also evident in C. arvense, whereas no such patterns are seen in C.heterophyllum. There is a major disparity between patterns of genetic variation in C. acaule and C. heterophyllum despite very similar patterns in seed production and population isolation in these species. This suggests it may be misleading to make assumptions about the geographical structure of genetic variation within species based solely on the present-day reproduction and distribution of populations

    What explains rare and conspicuous colours in a snail? A test of time-series data against models of drift, migration or selection

    Get PDF
    It is intriguing that conspicuous colour morphs of a prey species may be maintained at low frequencies alongside cryptic morphs. Negative frequency-dependent selection by predators using search images ('apostatic selection') is often suggested without rejecting alternative explanations. Using a maximum likelihood approach we fitted predictions from models of genetic drift, migration, constant selection, heterozygote advantage or negative frequency-dependent selection to time-series data of colour frequencies in isolated populations of a marine snail (Littorina saxatilis), re-established with perturbed colour morph frequencies and followed for >20 generations. Snails of conspicuous colours (white, red, banded) are naturally rare in the study area (usually <10%) but frequencies were manipulated to levels of ~50% (one colour per population) in 8 populations at the start of the experiment in 1992. In 2013, frequencies had declined to ~15-45%. Drift alone could not explain these changes. Migration could not be rejected in any population, but required rates much higher than those recorded. Directional selection was rejected in three populations in favour of balancing selection. Heterozygote advantage and negative frequency-dependent selection could not be distinguished statistically, although overall the results favoured the latter. Populations varied idiosyncratically as mild or variable colour selection (3-11%) interacted with demographic stochasticity, and the overall conclusion was that multiple mechanisms may contribute to maintaining the polymorphisms.Heredity advance online publication, 21 September 2016; doi:10.1038/hdy.2016.77

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    Distribution of variation over populations

    Get PDF
    Understanding the significance of the distribution of genetic or phenotypic variation over populations is one of the central concerns of population genetic and ecological research. The import of the research decisively depends on the measures that are applied to assess the amount of variation residing within and between populations. Common approaches can be classified under two perspectives: differentiation and apportionment. While the former focuses on differences (distances) in trait distribution between populations, the latter considers the division of the overall trait variation among populations. Particularly when multiple populations are studied, the apportionment perspective is usually given preference (via FST/GST indices), even though the other perspective is also relevant. The differences between the two perspectives as well as their joint conceptual basis can be exposed by referring them to the association between trait states and population affiliations. It is demonstrated that the two directions, association of population affiliation with trait state and of trait state with population affiliation, reflect the differentiation and the apportionment perspective, respectively. When combining both perspectives and applying the suggested measure of association, new and efficient methods of analysis result, as is outlined for population genetic processes. In conclusion, the association approach to an analysis of the distribution of trait variation over populations resolves problems that are frequently encountered with the apportionment perspective and its commonly applied measures in both population genetics and ecology, suggesting new and more comprehensive methods of analysis that include patterns of differentiation and apportionment
    corecore